Follow the Weeds: Assessing the Risk of Future Spread

Elizabeth Brusati1, Doug Johnson1, and Joseph DiTomaso2

1Cal-IPC, 2UC Davis
What is risk assessment?

Predicting which plants will become problems and where they could spread.

- Which plants already present in California could be the next invaders?
- What species could cause problems if imported?
- Complicated in California due to our diverse geography
Risk assessment and WMAs

- WMA members have a wealth of information on local weeds.
- However, formal survey data rare.
- Which species should WMAs worry about?
- Where should scarce funding be focused?
Why this project?

- Controlling invasive plants early in invasion reduces cost.
- No statewide data for most species
 - CDFA focuses on A-rated weeds
- Cal-IPC Inventory rates 200+ invasive plants in California but spatial data is rough.
1. Where are weeds now?
 Survey data from WMAs

2. Where could they spread?
 Climate modeling

3. Which areas are most vulnerable?
 Compare surveys to models

4. What else could invade?
 Weeds from other Mediterranean ecosystems
Counties & Jepson Regions
1. Where are weeds now?

<table>
<thead>
<tr>
<th>Current Abundance</th>
<th>Current Spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Increasing rapidly</td>
</tr>
<tr>
<td>Moderate</td>
<td>Increasing</td>
</tr>
<tr>
<td>High</td>
<td>Declining</td>
</tr>
<tr>
<td>Widespread</td>
<td></td>
</tr>
<tr>
<td>No Data</td>
<td></td>
</tr>
</tbody>
</table>
Cortaderia selloana
pampassgrass
Ditrichia graveolens

stinkwort
Sesbania punicea
Scarlet wisteria
2. Where can weeds spread?

Climate is most basic determinant of where a plant can grow

Climate models predict where plants can spread based on where they already grow
- Compare native and introduced ranges
- Calculate temp. and moisture tolerance
Climate models for California

- *Sapium sebiferum*: Pattison and Mack 2008, Bower et al. in prep
- *Arbutilon theophrasti*: Holt and Bose 2000
- *Delairea odorata*: Robison 2007
Our climate modeling

- 36 plants from Cal-IPC Inventory
 - Researched native and intro ranges
- California weather station data added into CLIMEX software
 - “Ecoclimatic index” 0 - 100
322 NOAA weather stations
Cortaderia selloana
Pampasgrass
Dittrichia graveolens
stinkwort
3. Which areas are most vulnerable?

<table>
<thead>
<tr>
<th>Current Abundance</th>
<th>Current Spread</th>
<th>Potential Suitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>↑ Increasing rapidly</td>
<td>Very low</td>
</tr>
<tr>
<td>Moderate</td>
<td>↑ Increasing</td>
<td>Low</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td>Widespread</td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>No Data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cortaderia selloana
pampassgrass
Dittrichia graveolens
Stinkwort
Sesbania punicea
Scarlet wisteria
Statewide Maps

Cal-IPC, in partnership with the California Dept. of Food & Agriculture, UC Davis, and the state’s network of Weed Management Areas (WMAs), has begun conducting statewide surveys of wildland weed distribution and trend. The purpose is to create rough statewide maps that provide a landscape-level assessment of where each weed is currently found, and whether it’s spreading.

Mapped survey data for each plant is available below. (Surveys to date have covered 36 of the species in the Cal-IPC Inventory.) The maps are the product of input from those working in the field locally, and are not meant to be definitive; ongoing input is welcome (contact info@cal-ipc.org).

The data in these maps will be used in conjunction with modeling to predict the extent to which each plant might spread in the state. This information can be used to support “early detection/rapid response” activities.

Abundance is rated in four cover classes, spread in three. Polygons are determined by combining county boundaries with major Jepson vegetation regions. Surveys were conducted summer 2007.

Help collect data for all of the invasive plants in our Inventory. Download the California County Weed Survey (Excel) with instructions.

Download survey data (Excel) shown on maps.
Climate change and weeds

Possible effects of climate change:
- Distributions shift to higher elevations and higher latitudes
- Increased CO$_2$ \rightarrow increased growth
- Increased fire \rightarrow habitat type conversion
- 66% of native CA plants could lose >80% of their range (Loarie et al. 2008)
Our climate change models

Based on 3°C increase

Compared predictions to ecoclimatic index under current conditions
Dittrichia graveolens stinkwort

current +3° C
Sesbania punicea scarlet wisteria

current +3° C
Overall “ecoclimatic index” for 36 modeled weeds was virtually unchanged (+2%)

Winners:
- castor bean (*Ricinus communis*) +99%
- fountaingrass (*Pennisetum setaceum*) +98%

Loser:
- Chinese tallow (*Sapium sebiferum*) -77%
A few caveats

- **Weather station data are individual points, while WMA surveys extrapolate to entire county**
 - Stations are not distributed evenly
- **Does not consider other factors**
 - Soils, competition, geographic barriers
4. What else could invade?

Best predictor of a species’ invasiveness here is invasiveness elsewhere

- 5 Mediterranean-type ecosystems: Mediterranean, W. Australia, S. Africa Cape region, central Chile, California
- Compiled lists of invasive plants
- Compared to records from California
- Definition of “invasive” varies
California data

- Jepson Online Interchange & Consortium of California Herbaria
- CalFlora
- Ornamentals: Sunset Garden Book, Plant Locator
International weeds - results

774 listed in other Mediterranean regions

391 not naturalized
- 143 ornamental
 - 27 not sold in CA
 - 116 sold in CA

383 naturalized
- 45 ornamental
 - 6 not sold in CA
 - 39 sold in CA

319 eliminated
- 45 ornamental
 - 39 sold in CA
Example: *Rhamnus alaternus*
Italian buckthorn

- Cal-IPC Red Alerts 2008
- Invasive in Australia
- Ornamental species sold in California
Connecting with other Cal-IPC projects

Early detection
 ▪ Regional Early Detection networks (e.g. Bay Area)

Cal-HIP & PlantRight
 ▪ Refining information on weeds
 ▪ List of plants to screen

Research Needs Assessment
 ▪ Climate change identified as area needing study
Next Steps

Mapping:
- Post maps of all species on website
- Create tools for generating online maps

Predictions:
- Provide “watch lists” to WMAs
- Model additional species (pending $$)
- Add more detail to models (pending $$)

International Weeds:
- Assess with Cal-HIP screening tool
Thank you to...

WMAs for survey data

UC Integrated Pest Management (funding)

Steve Schoenig, CA Dept. of Fish & Game
Scott Steinmaus, Cal Poly-San Luis Obispo
Colleen Murphy, CDFA
Len Liu, GIS consultant
Jon Hall, Cal Poly SLO
Rob Klinger, UCD
Mike Pitcairn, CDFA
Bertha McKinley, Cal-IPC
Jeremiah Mann, UC Davis