A case study from the lower Santa Clara River, CA: Strategic planning for control of *Arundo donax* and restoration of riparian vegetation in semi-arid landscapes

Bruce Orr and Zooey Diggory
STILLWATER SCIENCES

Tom Dudley
UC SANTA BARBARA
WATERSHED IMPACTS

- Agriculture
- Water supply development
- Levees and urban development
WATERSHED IMPACTS

- Invasion by giant reed (*Arundo donax*)
COMPONENTS OF THE SCR PARKWAY RESTORATION PLANNING EFFORT

1. Historical flood mapping and fluvial geomorphic analysis
2. Riparian vegetation mapping and classification
3. *Arundo donax* percent cover mapping (also *Tamarix*)
4. Riparian vegetation dynamics analysis
5. Synthesis to inform restoration strategies and management decisions
6. Develop strategic plan for arundo control and riparian restoration (*just beginning*)
FLOOD DYNAMICS:

- Vegetation infilling (encroachment) during ‘normal’ or drier periods

JUNE 2002
FLOOD DYNAMICS: El Niño Rules!

Vegetation reset after large floods in El Niño years
FLOOD DYNAMICS: Post-flood Response

- Rapid vegetation response after large resetting floods
Flood Mapping

- **Highly dynamic mainstem**

<table>
<thead>
<tr>
<th>Year</th>
<th>Flow (cfs)</th>
<th>Flood Recurrence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1938</td>
<td>120,000</td>
<td>14 year</td>
</tr>
<tr>
<td>1969</td>
<td>165,000</td>
<td>24 year</td>
</tr>
<tr>
<td>1978</td>
<td>102,200</td>
<td>11 year</td>
</tr>
<tr>
<td>1992</td>
<td>104,000</td>
<td>12 year</td>
</tr>
<tr>
<td>1995</td>
<td>110,000</td>
<td>13 year</td>
</tr>
<tr>
<td>2005</td>
<td>136,000</td>
<td>16 year</td>
</tr>
</tbody>
</table>
FLOOD MAPPING

40% reduction in historical floodplain extent
Diverse and dynamic riparian vegetation

- “Classic” cottonwood-willow types plus more xeric alluvial scrub types
- 58 alliances and 130 map unit types
Invasion by Arundo

- Replaces native vegetation
- Alters ecosystem processes
- >5,000 acres
RESTORATION OPPORTUNITIES & CONSTRAINTS

- Floods and dynamic channel and vegetation are both the asset and the hazard.
1. Acquire Floodplain Lands from Willing Sellers
2. Increase & Improve Floodplain Connectivity
3. Promote Revegetation via Natural Recruitment & Active Planting (in appropriate areas)
4. Implement Strategic Actions to Control Arundo
STRATEGIC ACTIONS TO CONTROL ARUNUDO

Multi-scale Top-Down Approach
 • Upstream to downstream (watershed, main river corridor, tributaries)
 • Upslope to downslope (corridor, reach, site)

Priorities based on economic cost, ecological benefit, & feasibility
 ▪ Protect & enhance high quality habitat
 ▪ Reduce fire and flood risk to infrastructure and habitat

Contingency Plans
 ▪ Post-flood control actions in flood reset zone
 ▪ Post-fire actions to promote native plant recovery
APPLICATION OF APPROACH

Flood Reset Zone

Terrace

Terrace
Example application at site scale

- Severely constrained floodplain and limited extent of riparian vegetation
Vegetation Types

- Dense Arundo
- Mixed Willow-Arunudo
- Willow Forest
High Resolution Topography to Model Relative Elevation
Historical Flood Mapping & Flood Frequency Analysis
Delineation of Primary Flood Reset Zone
High Priority Arundo Removal & Revegetation

High Priority Protection & Enhancement

Low Priority: Post-flood contingency action?
STRATEGIC ACTIONS TO CONTROL ARUNUDO

• Multi-scale Top-Down Approach
• Priorities based on economic cost, ecological benefit, & feasibility (including permitting)
• Contingency Plans
• We are just in the initial stages of developing the strategic arundo control plan:
 - If you’re willing to tell us about lessons learned from other efforts we’d love to talk with you!
FOR MORE INFORMATION

Bruce Orr
bruce@stillwatersci.com

Stillwater Sciences Website
www.stillwatersci.com

Santa Clara River Parkway Website
(includes project reports plus data layers viewable with Google Earth)

www.santaclarariverparkway.org

Also see our poster or join the Saturday field trip