Gray Leaf Spot of Kikuyugrass: An Invasive Pest of an Invasive Pest

Frank P. Wong, Karla A. de la Cerda, and Greg W. Douhan

Department of Plant Pathology
University of California, Riverside

California Invasive Plant Council Symposium
September 20-21, 2007
San Diego, CA
Introduction: Kikuyugrass

- *Pennisetum clandestinum*
- C-4/warm season grass
- Optimal growth is 16-32°C (60-90°F)
- Invasive weed in urban landscapes
- Classified as a federal noxious weed

www.calflora.net
Introduction: Kikuyugrass

- Native to Central / East Africa
- Introduced as an erosion control grass in California in 1918
- Established throughout:
 - central coast
 - southern coast & inland valleys
 - Hawaii/Mexico

www.calflora.net
- Very invasive in urban settings
- Stoloniferous growth
- Good shade, cold and heat tolerance
- Common in landscapes, parks, sports turf plantings
Grey Leaf Spot (Pyricularia grisea) on Perennial Ryegrass (Lolium perenne)
Vincelli, Uddin and Viji, *Plant Disease*
Rice Blast (Pyricularia grisea)
Gray Leaf Spot on St. Augustinegrass
Gray Leaf Spot on Perennial Ryegrass
Newport Coast, CA 2003
GLS on Kikuyugrass (*Pennisetum clandestinum*)
GLS on kikuyugrass, Huntington Beach 2006
Grasses inoculated with isolate OSGC-1 (KK)
Current Management Issues for Gray Leaf Spot

- Due to the damage potential on sports turf – the disease is heavily managed from July to October
 - It has not yet been a major issue on non-sports turf plantings
- Reduced nitrogen in summer months
- Water use management
- Regular fungicide applications
 - $150 to 600 per acre
 - 30 – 80 acres
 - 4 to 6 applications ($18,000 - $288,000)
- QoI-fungicide resistance has already developed at several locations within 2 years of use
Geographic Distribution of Gray Leaf Spot in the West

- Gray Leaf Spot has been diagnosed from > 75 locations in California and Nevada since 2003
- Perennial ryegrass
- Kikuyugrass
- St. Augustine
Questions & Objectives

• Where did the kikuyugrass populations of *Pyricularia grisea* originate?
• How closely are kikuyugrass populations related to populations from other hosts?

• Determine the genetic structure of *P. grisea* populations from the western U.S.
• Compare *P. grisea* isolates from populations in the western and eastern U.S.
Genetic Characterization of Pyricularia grisea Populations from Turfgrass

- Restriction Fragment Length Polymorphism (RFLP) analysis
 ▪ (Viji et al 2001, Farman 2001)
- Amplified Fragment Length Polymorphism (AFLP) analysis
 ▪ (Tredway 2005)
- Mating type idiomorph distribution
 ▪ (Tredway 2003)
P. grisea Populations

- Populations from 17 locations collected in 2006
 - 8 perennial ryegrass
 - 6 kikuyugrass
 - 3 St. Augustine
P. grisea Populations

Single Spore Isolate Origins

<table>
<thead>
<tr>
<th>Collection Date</th>
<th>Population</th>
<th>City</th>
<th>Host</th>
<th>Isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/7/2006</td>
<td>TIPIOS</td>
<td>Oceanside</td>
<td>perennial ryegrass</td>
<td>36</td>
</tr>
<tr>
<td>8/17/2006</td>
<td>MPCCMP</td>
<td>Moorpark</td>
<td>perennial ryegrass</td>
<td>10</td>
</tr>
<tr>
<td>9/6/2006</td>
<td>NVCCNV</td>
<td>Napa</td>
<td>perennial ryegrass</td>
<td>36</td>
</tr>
<tr>
<td>9/22/2006</td>
<td>ALCCSJ</td>
<td>San Jose</td>
<td>perennial ryegrass</td>
<td>21</td>
</tr>
<tr>
<td>10/6/2006</td>
<td>TOSTNA</td>
<td>Napa</td>
<td>perennial ryegrass</td>
<td>8</td>
</tr>
<tr>
<td>10/11/2006</td>
<td>SSGCLV</td>
<td>Las Vegas</td>
<td>perennial ryegrass</td>
<td>5</td>
</tr>
<tr>
<td>10/11/2006</td>
<td>VCOMSB</td>
<td>Santa Barbara</td>
<td>perennial ryegrass</td>
<td>5</td>
</tr>
<tr>
<td>10/13/2006</td>
<td>SHCCMP</td>
<td>Menlo Park</td>
<td>perennial ryegrass</td>
<td>10</td>
</tr>
<tr>
<td>10/14/2006</td>
<td>HAGCLH</td>
<td>La Habra Heights</td>
<td>perennial ryegrass</td>
<td>20</td>
</tr>
<tr>
<td>7/6/2006</td>
<td>NBCCNB</td>
<td>Newport Beach</td>
<td>kikuyugrass</td>
<td>2</td>
</tr>
<tr>
<td>8/17/2006</td>
<td>SCCCHB</td>
<td>Huntington Beach</td>
<td>kikuyugrass</td>
<td>71</td>
</tr>
<tr>
<td>8/31/2006</td>
<td>HCCCLA</td>
<td>Los Angeles</td>
<td>kikuyugrass</td>
<td>87</td>
</tr>
<tr>
<td>9/19/2006</td>
<td>BPGCSD</td>
<td>San Diego</td>
<td>kikuyugrass</td>
<td>89</td>
</tr>
<tr>
<td>9/21/2006</td>
<td>CCCCRI</td>
<td>Riverside</td>
<td>kikuyugrass</td>
<td>22</td>
</tr>
<tr>
<td>10/14/2006</td>
<td>HAGCLH</td>
<td>La Habra Heights</td>
<td>kikuyugrass</td>
<td>2</td>
</tr>
<tr>
<td>8/28/2006</td>
<td>SDSALS</td>
<td>San Diego</td>
<td>St. Augustinegrass</td>
<td>3</td>
</tr>
<tr>
<td>9/5/2006</td>
<td>UCI</td>
<td>Irvine</td>
<td>St. Augustinegrass</td>
<td>6</td>
</tr>
<tr>
<td>9/29/2006</td>
<td>HDMVND</td>
<td>Moreno Valley</td>
<td>St. Augustinegrass</td>
<td>20</td>
</tr>
</tbody>
</table>
Mating Type Idiomorph Distribution

- Mat 1-1 and Mat 1-2 specific primers were used to amplify mating type idiomorphs from extracted genomic DNA (Tredway 2003)
 - Mat 1-1 (552 bp)
 - L1 5-ATGAGAGCCTCATCAACGGCAACG-3
 - L2 5-ACAGGATGTAGGCATTGCAGGAC-3
 - Mat 1-2 (390 bp)
 - T1 5-ACAAGGCAACCATCTTGGACCCTG-3
 - T2 5-CCAAAACACCGAGTGCCATCAAGC-3
- Products visualized by agarose gel electrophoresis and ethidium bromide staining
GLS Mating Types

Mat 1-1

Mat 1-2

Kikuyugrass

Perennial Rye
Mating Type Distribution

<table>
<thead>
<tr>
<th>Host</th>
<th>Mat 1-1</th>
<th>Mat 1-2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryegrass (Lolium perenne)</td>
<td>0</td>
<td>149</td>
<td>149</td>
</tr>
<tr>
<td>St. Augustinegrass (Stenotaphrum secundatum)</td>
<td>24</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>Kikuyugrass (Pennisetum clandestinum)</td>
<td>239</td>
<td>22</td>
<td>261</td>
</tr>
<tr>
<td>Rice (Oryzae sativa)</td>
<td>180</td>
<td>0</td>
<td>180</td>
</tr>
</tbody>
</table>
Mating Type Distribution: Kikuyugrass Populations

<table>
<thead>
<tr>
<th>Host</th>
<th>Mat 1-1</th>
<th>Mat 1-2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCCNB</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SCCCHB</td>
<td>55</td>
<td>16 (23%)</td>
<td>71</td>
</tr>
<tr>
<td>HCCCLA</td>
<td>87</td>
<td>0</td>
<td>87</td>
</tr>
<tr>
<td>BPGCSD</td>
<td>83</td>
<td>6 (7%)</td>
<td>89</td>
</tr>
<tr>
<td>CCCCRI</td>
<td>22</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>HAGCLH</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Mating type assays

- Perithecia have been produced in vitro between Mat 1-1 and Mat 1-2 kikuyu grass isolates
- Viability of ascospores is being examined
- Unique for U.S. populations of *Pyricularia grisea*
AFLP Analysis

- 100-200 ng of genomic DNA digested with *EcoRI* and *Msel*
- Double-stranded *EcoRI* and *Msel* adaptors ligated to digested DNA
- One sets of selective primers used
 - *EcoRI*-AA
 - *Msel*-CA (Tredway 2005)
- 37 polymorphic locations scored for each isolate
AFLP Analysis
Eastern U.S. Populations

• Penn State (W. Uddin)
 ▪ Perennial ryegrass – 19 isolates
 ▪ Kansas, Maryland, New Jersey, Virginia, West Virginia, New York, Pennsylvania

• North Carolina State Univ. (L. Tredway)
 ▪ Tall fescue (*Festuca arundinacea*) – 10
 ▪ Weeping lovegrass (*Eragrostis curvula*) – 2
 ▪ St. Augustinegrass - 3
Perennial Ryegrass vs Kikuyugrass
Cluster analysis of genetic distances using unweighted pair-group method (UPGMA); bootstrap values based on 1000 reps.
Summary of Results

- 434 isolates of *P. grisea* were analyzed
- Mat 1-1 and Mat 1-2 mating type idiomorphs are present in west coast populations of *Pyricularia grisea*
 - Perennial ryegrass isolates are all Mat 1-2 (149)
 - St. Augustine isolates are all Mat 1-1 (24)
 - Both are present in kikuyugrass isolates (261)
 - Mat 1-1 (92%)
 - Mat 1-2 (8%)
 - BPGCSD (7%)
 - SCCCHB (23%)
Summary of Results

• AFLP data supports separation of isolates from kikuyugrass, perennial ryegrass and St. Augustinegrass into distinct clades by host
 ▪ The kikuyugrass clade appears to have two groups
 ▪ Mat 1-1 and Mat 1-2 appear present in both kikuyugrass groups
Conclusions

- AFLP and mating type distribution data indicate *P. grisea* populations from St. Augustine and perennial ryegrass from the West are similar to those from the East.

- The kikuyugrass population appears unique:
 - AFLP analysis separates these from other clades.
 - Host specificity for infection.
 - The presence of both mating types and higher diversity suggests the possibility of sexual recombination/reproduction in these populations.
 - Alternately – the diversity could be a result of host diversity.
 - Only a few kikuyugrass genotypes have been reported using isozyme analysis (Wilen et al. 1995).
Conclusions

• Management in sports turf continues to be a problem
• The kikuyugrass populations of *P. grisea* represent a “new” lineage of the pathogen that has not been seen in the U.S. before
 ▪ Possible sexual recombination = increased diversity
 ▪ Spread to other hosts (weeds & crops)
• This pathosystem is being examined as a potential model for pathogen evolution/invasion in urban ecosystems
Acknowledgements

• GCSAA Institute for Environmental Research
• California State GCSAA
 ▪ San Diego, Northern California, Southern California, Sierra Nevada, Hi-Lo Desert GCSAs
• University of California Invasive Pests Program
• Larry Stowell & Wendy Gelernter, PACE Consulting
• Lane Tredway, North Carolina State University
• Wakar Uddin, Penn State University
• The APS Turf Working Group