The effects of climate change on the growth of Barbed Goatgrass (*Aegilops triuncialis*) in serpentine grasslands

Elise Morrison, Amy Battaglia, and Barbara Going

Department of Environmental Science and Policy
University of California – Davis
CAL-IPC Symposium, October 14, 2010
Invasion and Climate Change

Climate change may:

- alter current trajectories of invasive species
- disrupt the competitive balance between invasive and native species
- increase the invasibility of native communities

BUT the extent and magnitude is unclear…

- Understanding is essential for developing and prioritizing future management strategies

Thomsen 2007
Invasives have transformed CA grasslands:

- Native communities restricted to harsh soils
- Serpentine grasslands
  - High endemism
  - Dominated by native forbs and grasses
  - Relatively resistant to invasion due to:
    - Low nutrients
    - High heavy metals
    - Low calcium-magnesium ratio
    - Competition from native community?

Going et al. 2008

©Barbara Going
**Aegilops triuncialis**

Currently, serpentine grasslands are threatened by *A. triuncialis*, Barbed Goatgrass:

- Late season annual grass
- Aggressive invader in rangelands and wildlands
- Cal-IPC Inventory rating: High
- Class B Noxious Weed
Climate Change and Serpentine Grasslands

Models estimate changes in CA precipitation:

- 44% increase to almost 70% decrease
- Unclear how Barbed Goatgrass will respond

Our Questions

How will alterations in spring precipitation influence the growth of Barbed Goatgrass on serpentine grasslands?

How will Barbed Goatgrass respond to competition with the native community?

Cayan et al. 2008
Study Site

- Donald and Sylvia McLaughlin Natural Reserve (UC Davis)
- In 2010, this site received 35.5 cm of spring precipitation
- In the past ten years, this site received an average of 30.1 cm of spring precipitation each year
- 18% greater than average
Experimental Design

Three precipitation treatments:
- High 150% ambient
- Control ambient
- Low 50% ambient

Two nested competition treatments:
- With Competition (Uncleared)
- Without Competition (Cleared)
Rainout shelter

Irrigation system
June RGR showed a significant interaction between the precipitation and competition treatments (p = 0.0307).
Competition had a marginally significant effect on A. triuncialis (Barbed Goatgrass) biomass ($p = 0.0596$).
Summary

Precipitation and Competition:

- Native community has a competitive effect on Barbed Goatgrass growth late in the season, particularly in the high precipitation treatment.

- Suggests that community resistance may depend on water availability.

- Native community also reduced Barbed Goatgrass biomass.

The native community may be able to compete with invaders, depending on the direction of climate change.
Management Implications

If climate change increases precipitation:

• Could improve biomass production of Barbed Goatgrass in serpentine grasslands

• Might require heightened vigilance in wet years

However, the native community is able to compete:

• Maintaining an intact native community may help reduce the risk of invasion

Ultimately, the spread of Barbed Goatgrass in serpentine grasslands will depend on the direction of climate change...
Acknowledgements

I’d like to thank:

Barbara Going, Amy Battaglia, Paul Aigner, Cathy Koehler, Shane Rodgers,
Rachel Oliff, John Fitsos, the McLaughlin Reserve, the Harrison Laboratory
and the California Invasive Plant Council
Questions?