Prescribed Fire and Exotic Plant Effects on California Grasslands

S.J.M. Dickens, E.B. Allen, C. Bell and Z. Principe

University of California Riverside,
The Nature Conservancy,
California Department of Fish and Game
Santa Rosa Plateau Ecological Reserve

- Over 8000 acres
- 5 ecosystem types
- Many rare and endangered species
- Prescribed burning for 20 + years

Pictures: Cal Photos and Friends of Swainson’s Hawk
Exotic Annual Grasses of Concern

Avena barbata and A. fatua

Bromus diandrus, B. rubens, B. hordeaceus

Vulpia myuros
Prescribed Fire

Removal of exotic seed and thatch to release native plant species. Burns occur in the spring in Southern California to capture exotics with seed still on the standing biomass.

(Hervey 1949; Gillespie & Allen 2004; Moyes et al. 2005; White et al. 2006)
Project Objectives

1. Examine the effectiveness of spring, prescribed burns in controlling exotic grasses.
2. Determine an optimal burn regime to reduce exotic grasses and release native plant species.
3. Determine if soil chemistry is responding to reduced exotic grass caused by burning.
Chronosequence Method

- 6 burn units were sampled at season peak.
- Variables recorded included: Species richness, percent cover.
- Soil cores of 10cm depth analyzed for total N and C, NO$_3$-, NH$_4$-, and P.
Long-term Data Collection Method

– Transects were permanently set up in 10 burn units throughout preserve.

– Transect location was determined by randomly locating 2 points, connecting them with a transect and sampling along 50 m of the transect.

– Line-point intercept sampling was conducted at 1 meter intervals during springs of 2001-2006.

– Plant species frequency (F) was determined:

$$F = \frac{\text{# of intercepts at which a species is found}}{\text{Total # of intercepts on the transect}}$$
Long-term Data Plant Frequency

Sample Year

2001 2002 2003 2004 2005 2006

Native Forb

Exotic Forb

Native Grass

Exotic Grass

Sample Year

2001 2002 2003 2004 2005 2006
Chronosequence Species Richness Data

Date of Burn Unit's Last Burn

Richness

- Exotic richness
- Native richness
Chronosequence Plant Percent Cover Data
Chronosequence Total Nitrogen and Carbon

![Graph showing Total Nitrogen and Carbon over different dates.](image)
Chronosequence Extractable Nitrogen

![Bar chart showing extractable nitrogen (ppm) by date of burn unit's last fire. The chart includes data for 1980, 1997, 2000, 2005, 2006, and 2007. The chart compares extractable nitrogen levels as NO₃ ppm and NH₄ ppm.]
Conclusions

• Prescribed burns reduce exotic grass frequency and allow for increased native and exotic forb frequency.

• Exotic grass frequency returns to initial levels within 4 years.

• Increases in forb cover declines with increased recovery of exotic grasses.

• Soil chemical pools are not being altered by fire or different exotic grass invasion levels.
Management Implications

• Since pre-fire exotic grass frequencies return within 3-4 years of the burn, burning every 4 years might reduce exotic grasses while allowing for the natives to persist.

• Chronosequence method is not as effective as long-term monitoring of burn units.

• Coarse scale measurements such as plant frequency from line intercept methods are effective methods for measuring changes in plant community, and are less costly.

• To understand the long-term effects on natives, native species seedling counts are necessary to test for recruitment.
Acknowledgements

• Dr. Edith Allen
• Carole Bell
• Zack Principe
• The Edith Allen Lab
• Santa Rosa Plateau Ecological Reserve
• California Department of Fish and Game

Funding Sources:

– The Nature Conservancy

– Skinner-Shipley/Riverside County Endowment

– University of California Riverside Department of Botany and Plant Sciences