Alteration of nitrogen cycling processes by exotic annuals in a California grassland

Chelsea Carey¹, Stephen C. Hart¹, Valerie T. Eviner²

University of California, Merced Environmental Systems Program

University of California, Davis Department of Plant Sciences

Outline

- Introduction
- Hypotheses
- Experimental design and methods
- Results
- Conclusions, implications, and further research

Plant-soil-microbe interactions may be altered by invasive species

Wolfe and Klironomos 2005

Soil flora and fauna are important to consider

Modified from Wardle et al. 2004

Indirect interactions

- Bacterial and fungal decomposers
- Nutrient-cycling microorganisms
- Protozoa and nematodes

Shifts in nitrogen (N) cycling may have important implications for restoration

- Nitrogen is the limiting nutrient in most temperate ecosystems
 - Potential to control plant community composition
 - Plant-soil feedbacks one mechanism for invasion and reinvasion

- Soil legacies may interfere with restoration attempts
 - The success of restoration projects may depend on removal of invasive species + amendment to the soil

Grman and Suding 2010

Hypotheses

- Nitrogen cycling associated with invaded communities would differ from native communities
- "Old" invasive species would have intermediate values between "new" invasive species and native species
- Shifts in microbial communities and soil fauna would accompany shifts in nitrogen cycling

Study site: Davis, CA

Experimental design

- Established 2006
- Randomized complete block design
- Factorially replicated treatments
- 1.5 x 1.5 m plots

Experimental design

- Three treatments:
 - "New" invasive species ("weeds") Aegilops triuncialis and Taeniatherum caput-medusae
 - "Old" invasive species (exotic forage annuals; "annuals") Avena fatau, Bromus hordeaceus, Lolium multiflorum, and Trifolium subteranneum[°]
 - Native species ("natives") Bromus carinatus, Elymus glaucus*, Leymus triticoides*, Lotus purshianus°, Lupinus bicolor°, Nassella pulchra*, Poa secunda, and Vulpia microstachys

Nitrogen fixersPerennials

Data collection

- Ten replicates per treatment (n = 10)
- Per plot: composited 5 randomly selected cores from top 15 cm of mineral soil
- Variables measured:
 - Soil parameters
 - Total C and N
 - Nitrification potentials
 - pH
 - Soil moisture

- Biotic parameters
 - Total bacteria and fungi
 - Protozoa
 - Amoeba
 - Ciliates
 - Flagellates

Soil Total Carbon and Nitrogen

Nitrification potentials

Total bacteria and fungi

Protozoa

* Marginally significant ($p \le 0.10$)

Conclusions

- Hypothesis 1 was supported
 - Total N pools of invaded soils were lower than native soils
 - C:N ratio of the soil was increased in invaded soils
 - Nitrification potentials decreased with invasion
- Hypothesis 2 was supported
 - Total N and nitrification potential values of "old" invasives were intermediate between "new" invasives and natives
- Hypothesis 3 was not supported
 - Total bacteria and fungi did not differ by treatment
 - Ciliates and flagellates did not differ by treatment; Amoeba were only marginally affected

Implications

 Invasive species can significantly alter N dynamics in a California grassland

- Plant-soil feedbacks and legacies of altered N may interfere with restoration efforts
- Soil amendments may be necessary
- Not all invasive species produce the same ecosystemlevel effects
 - Species and context dependent

Future research

- Soil conditioning/plant-soil feedback experiments
- Multiyear investigation
- Investigate the soil microbial community at a finer scale
 - Active bacteria and fungi
 - Nitrifying and denitrifying community
 - Microbial community composition

Acknowledgements

- Dr. Stephen Hart
- Dr. Valerie Eviner
- Jill Baty
- The Beman Lab
- The Hart Lab

Funding

- UC Merced Graduate Research Council
- UC Merced Environmental Systems Program