Some Drivers of Sahara Mustard Invasion: Surficial Geology and Primary, Secondary, and Tertiary Roads

Kristin Berry, Heather Schneider, & David Miller

Objectives

- <u>Develop models</u> of *Brassica tournefortii* (BRTO) invasion & establishment in the Colorado & Mojave deserts
- Identify contributing factors

Locations of 2 Study Areas

- Daggett
- Chemehuevi
 Valley

Objectives: Colorado Desert site

- Retrospective analysis of BRTO arrival
- Changes in BRTO distribution & density in 1999 & 2009
- Sources & contributors to BRTO invasion, density, distribution

Berry et al. 2014. Modeling mustard invasion. IPSM 7:599-7616

Chemehuevi Valley – 4.7 km²

- 180 belt transects
- 6 annual plant transects

OPEN DESERT NORTH: small stream channels cutting through granitic soils

CHEMEHUEVI WASH: axial valley wash

OPEN DESERT SOUTH: volcanic origins, desert pavements

Surficial geology

- Open Desert N.: (granitic), ≥ 6000 yrs
- Wash, <200 yrs
- Open Desert S.: (volcanic), 20,000-300,000 yrs

1999 BRTO densities

- Counts from 180 transects
- ordinary kriging
- contour maps of BRTO densities

2009: BRTO densities

 ~84 fold increase in BRTO

General Linear Models

- Variables likely to influence BRTO density:
 - surficial geology/soils
 - Open Desert North
 - Chemehuevi Wash, axial valley wash
 - Open Desert South
 - distance to Hwy 95
 - Stream channels, and interactions

Predictor variables for 1999 *BRTO* density: GLM (non-spatial model)

Significant effects for:

- Surficial geo/soils
- Proximity to highway
- Proximity to axial Chemehuevi Wash
- Increasing # of ephem. stream channels

Predictor variables for 2009 BRTO Density (power covariance model, GLMs)

Significant effects for:

- Surficial geo/soils
- Proximity to Hwy 95
- Increasing # stream channels

Vulnerablities:

- Axial Valley wash
 - Small, ephemeral stream channels

Young surfaces and soils are vulnerable

Old surfaces are least vulnerable

Summary- Chemehuevi

• BRTO can invade from roads,

large and small stream channels

- Old geological surfaces & pavements less vulnerable than young surfaces
- High potential for negative effects on
 - Vegetation, tortoises, ecosystems

Objectives: Mojave Desert site

Background: 2005, observed BRTO in early stage of invasion. 2010, collected data

- Evaluate roles of paved & dirt roads, e.g., roads associated with utility rights-of-way
- Model & identify factors contributing to invasion & establishment

~41 km² study area

Study area & road types

- 1°: I-40
- 2°: County road
- 3 °: 7 utility-line roads, 1 mining & rec. road, & Kern pipeline

Transects: each 2 x 100 m

199 on road berms

199 on hectare plots

Summary: BRTO abundance & location

Brassica (number per transect)

- * 0
- 1 25
- 26 50
- 51 200
- **201 600**
- 601 1800

Summary: abundance & location

- BRTO on all I-40
 transects
- More BRTO on east than west roads
- Most distant BRTO from I-40: 3.5 km

Road berm BRTO counts:

Used optimized hot spot analysis

Findings from GLMs: Road berms

- High BRTO counts positively associated with proximity to 1° (I-40) and 3° roads
- Interactions between 1° & 2° roads also significant

Hectare plot transects

- 25% of plots had BRTO
- Highest BRTO count in a transect: 1765 &
- Closest road: 3°

Findings: BRTO on hectare transects

- Distance to the 2° road had significant positive effect
- Probability of BRTO increased by proximity to 2° road
- Interactions of distances to all 3 road types were significant

Combined 2 data sets for visual eval.

- All 3 road types important, synergistic effects
- Once BRTO arrives to interior desert, can establish & spread without roads

Applications:

- Early warning, Weed Sentry Program similar to NV, highly desirable
- Use geological maps, identify surficial geology
- Use topo maps to identify stream channels

Abella et al. 2009. Environ. Monit. Assess. 151:221-230

- Use road, utility & transmission line maps
- Ensure active weed control for roads, rightsof-way, utilities
 - Major Cities
 - Roads
 - **Transmission Lines:**
 - Existing
 - PEIS
 - Renewable Energy

Transmission Corridors

Acknowledgements

- Tim Gowan, Matt Brooks, Roger Hathaway
- Funded by:
 - Bureau of Land Management
 - California Department of Parks & Recreation
 - USGS
 - US Army

