
### Root traits & seedling growth across 18 native & invasive species exposed to drought





Avena barbata


Julie Larson & Jennifer Funk Chapman University, Orange, CA

jlarson@chapman.edu

Coastal sage scrub

## Functional traits

 Traits that influence an individual's fitness (growth, survival, reproduction)



## Functional traits

Traits that influence an individual's fitness (growth, survival, reproduction)



#### Perennial, shrubby

High water use efficiency

*High leaf thickness* 

High leaf longevity

Slow growth

High specific leaf area High photosynthetic capacity

Annuals

Rapid growth



# Do **root traits** form a similar spectrum tied to seedling growth and life history?

## Root functional traits

#### A number of traits may be tied to water uptake and growth

- -Root elongation rate (RER)
- -Specific root length (SRL)
- -Root diameter
- -Root mass fraction (RMF)

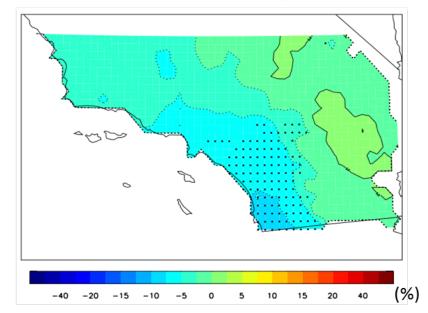
#### Perennial, shrubby

Slow growth

*High root diameter High root mass fraction*  High specific root length Rapid root elongation

Annuals

Rapid growth


Poorter & Markesteijn, 2008, Biotropica Roumet et al. 2006, New Phytologist

## How will root systems respond...

#### ...to increasing drought?



BCSD-CMIP3 SoCal Precipitation Change Medium Emissions Scenario, 2041-2070



...and during very young life stages?

## Research questions

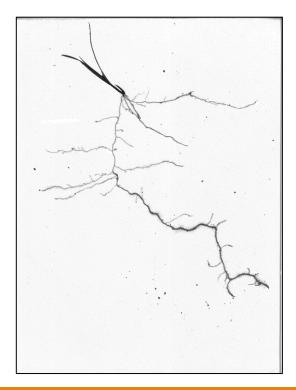
#### Across 18 native and invasive species:

- How do root systems respond to drought? Do species and life history groups differ with respect to plasticity?
- 2) Do belowground "strategies" of coordinated root traits exist? Do life history groups or invasive species differ broadly with respect to these strategies?



## Methods

#### 18 species \* 3 watering treatments \* 5 reps = 270 seedlings


| <u>Species</u>           | Code | <u>Origin</u> | Life history group |
|--------------------------|------|---------------|--------------------|
| Brassica nigra           | BRNI | I             | Annual forb        |
| Medicago polymorpha      | MEPO | I             | Annual forb        |
| Deinandra fasciculata    | DEFA | Ν             | Annual forb        |
| Phacelia cicutaria       | PHCI | Ν             | Annual forb        |
| Salvia columbariae       | SACO | Ν             | Annual forb        |
| Eschscholzia californica | ESCA | N             | Perennial forb     |
| Malacothrix saxatilis    | MASA | N             | Perennial forb     |
| Avena barbata            | AVBA | I             | Annual grass       |
| Bromus madritensis       | BRMA | I             | Annual grass       |
| Leymus condensatus       | LECO | N             | Perennial grass    |
| Nassella pulchra         | NAPU | N             | Perennial grass    |
| Artemisia californica    | ARCA | Ν             | Perennial shrub    |
| Encelia californica      | ENCA | Ν             | Perennial shrub    |
| Eriogonum fasciculatum   | ERFA | Ν             | Perennial shrub    |
| Salvia apiana            | SAAP | Ν             | Perennial shrub    |
| Salvia mellifera         | SAME | Ν             | Perennial shrub    |
| Acmispon glaber          | ACGL | Ν             | Perennial subshrub |
| Isocoma menziesii        | ISME | Ν             | Perennial subshrub |

| Water     | Volumetric    |
|-----------|---------------|
| treatment | water content |
| L         | 11%           |
| М         | 18%           |
| Н         | 25%           |

## Methods

- Seedlings grown for 4-6 weeks
- Scanned and weighed for root and growth traits





### 1) How do root systems respond to drought?

 ANOVA: For all traits, there was a significant effect of species, water treatment, and their interaction (p<0.05)</li>

| Trait                 | Effect of drought<br>(H to L) | % Change<br>(H to L) |  |  |
|-----------------------|-------------------------------|----------------------|--|--|
| Plant growth rate     | Decrease                      | 32%                  |  |  |
| Root mass growth rate | Decrease                      | 25%                  |  |  |
| Root elongation rate  | Decrease                      | 24%                  |  |  |
| Plant N uptake        | Decrease                      | 44%                  |  |  |
| Specific root length  | Decrease                      | 5%                   |  |  |
| Root diameter         | Increase                      | 8%                   |  |  |
| Root mass fraction    | Increase                      | 12%                  |  |  |



#### Root traits can be highly plastic, but the extent varies by species

# 1) Do life history groups differ with respect to plasticity?

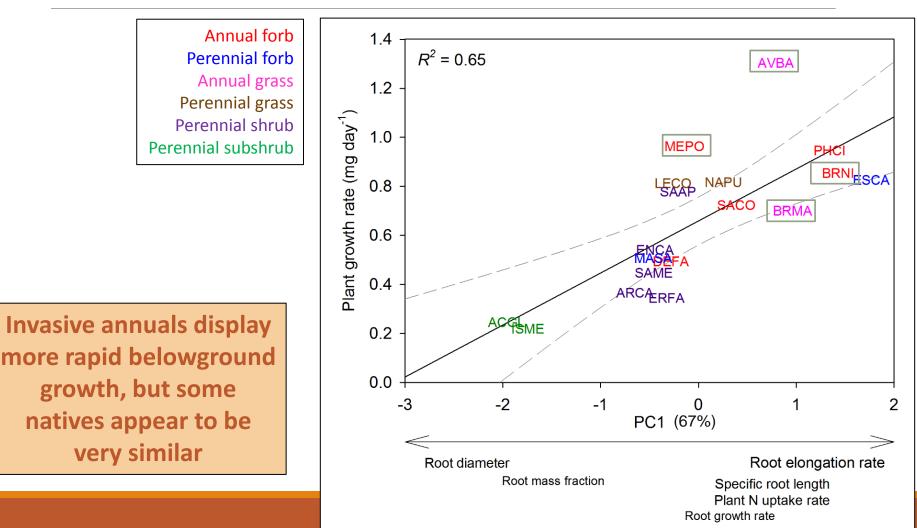
ANOVA: Only two plasticity indices differed between life history groups

| Plasticity Index      | Life History |
|-----------------------|--------------|
| Plant growth rate     | NS           |
| Root mass growth rate | NS           |
| Root elongation rate  | NS           |
| Plant N uptake        | NS           |
| Specific root length  | p < 0.10     |
| Root mass fraction    | P < 0.05     |
| Root diameter         | NS           |

• Life history group is not a good predictor of root trait plasticity

# 2) Do belowground "strategies" of coordinated root traits exist?

PCA of root traits:


-One axis (PC1) explained most of the variation in root traits

- PC1 correlated strongly with whole plant growth

Across watering treatments, correlated root traits do suggest a belowground trait spectrum related to growth rate

|                    | PC1 (67%)                                                       |
|--------------------|-----------------------------------------------------------------|
| Root diameter      | Root elongation rate                                            |
| Root mass fraction | Specific root length<br>Plant N uptake rate<br>Root growth rate |

# 2) Do life history groups or invasive species differ broadly with respect to these strategies?



## Conclusions

 Root traits AND plasticity differed substantially across species, with some link to life history

- •A few key root traits could capture broad differences in belowground strategy (root elongation rate)
  - Should consider additional traits (e.g., architecture, root depth)
  - Should link traits to water uptake, survival

#### Management implications

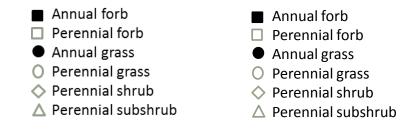
- Native species displayed a variety of belowground strategies relative to invasive annuals
- Identifying functionally similar and different natives could be useful to either suppress invasives or promote coexistence

## Acknowledgements

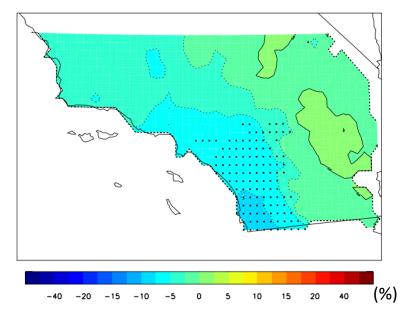
We gratefully acknowledge L. Sanborn, N. Voraphaurek, M. Merrill, K. Forrest, M. Christensen, M. Nguyen, J. Kim, A. Ortega, and D. Platt for assistance in the laboratory. We also thank the Irvine Ranch Conservancy (Irvine, CA) for providing native seed material.

This work was funded by NSF-IOS 1256827.






**Table 2** Pearson correlations (r) and percent variance (h2) explained for the first PCA axis (PC1). The h2 metric estimates the percent variance of an observed trait which is accounted for by the retained components.


| Trait                | r     | $h^2$ |
|----------------------|-------|-------|
| Root mass fraction   | -0.64 | 0.41  |
| Root diameter        | -0.83 | 0.69  |
| Root growth rate     | 0.69  | 0.48  |
| Root elongation rate | 0.98  | 0.96  |
| Specific root length | 0.84  | 0.71  |
| Plant N uptake rate  | 0.89  | 0.79  |
| Total % variance     | 0.67  |       |

|                                                                 |            |            |        |        | Root   |       |                | Ν      | Plant |
|-----------------------------------------------------------------|------------|------------|--------|--------|--------|-------|----------------|--------|-------|
|                                                                 |            |            | RD     | RMF    | GR     | RER   | SRL            | uptake | GR    |
| Table 3 Pearson correlation                                     | (a) Across | treatments |        |        |        |       |                |        |       |
| matrix of root traits and plant                                 |            | RD         | 1      |        |        |       |                |        |       |
| growth rate (a) across water                                    |            | RMF        | 0.43+  | 1      |        |       |                |        |       |
| treatments and within (b) low,                                  |            | Root GR    | -0.32  | -0.2   | 1      |       |                |        |       |
| (c) moderate, and (d) high water                                |            | RER        | -0.81* | -0.49* | 0.74*  | 1     |                |        |       |
| treatments. Trait abbreviations                                 |            | SRL        | -0.91* | -0.55* | 0.24   | 0.83* | 1              |        |       |
| are root diameter (RD), root                                    |            | N uptake   | -0.53* | -0.58* | 0.88*  | 0.87* | 0.53*          | 1      |       |
| mass fraction (RMF), root                                       |            | Plant GR   | -0.4   | -0.46+ | 0.96*  | 0.81* | 0.37           | 0.96*  | 1     |
| growth rate (root GR), root                                     | (b) Low    |            |        |        |        |       |                |        |       |
| elongation rate (RER), specific                                 |            | RD         | 1      |        |        |       |                |        |       |
| root length (SRL), plant N<br>uptake rate (N uptake), and plant |            | RMF        | 0.45+  | 1      |        |       |                |        |       |
| growth rate (plant GR).                                         |            | Root GR    | -0.19  | -0.19  | 1      |       |                |        |       |
| growth rate (plant OK).                                         |            | RER        | -0.81* | -0.53* | 0.65*  | 1     |                |        |       |
|                                                                 |            | SRL        | -0.92* | -0.55* | 0.11   | 0.83* | 1              |        |       |
|                                                                 |            | N uptake   | -0.53* | -0.69* | 0.79*  | 0.86* | 0.54*          | 1      |       |
|                                                                 |            | Plant GR   | -0.31  | -0.5*  | 0.95*  | 0.75* | 0.28           | 0.92*  | 1     |
|                                                                 | (c) Moder  | ate        |        |        |        |       |                |        |       |
|                                                                 |            | RD         | 1      |        |        |       |                |        |       |
|                                                                 |            | RMF        | 0.55*  | 1      |        |       |                |        |       |
|                                                                 |            | Root GR    | -0.33  | -0.18  | 1      |       |                |        |       |
|                                                                 |            | RER        | -0.78* | -0.54* | 0.77*  | 1     |                |        |       |
|                                                                 |            | SRL        | -0.9*  | -0.65* | 0.33   | 0.85* | 1              |        |       |
|                                                                 |            | N uptake   | -0.6*  | -0.61* | 0.84*  | 0.91* | 0.65*          | 1      |       |
|                                                                 |            |            | -      | 0.45   | 0.0.41 | 0.051 | 6 <b>1</b> 0 t |        |       |
|                                                                 |            | Plant GR   | 0.46+  | -0.46+ | 0.96*  | 0.86* | 0.49*          | 0.95*  | 1     |
|                                                                 | (d) High   |            |        |        |        |       |                |        |       |
|                                                                 |            | RD         | 1      |        |        |       |                |        |       |
|                                                                 |            | RMF        | 0.24   | 1      |        |       |                |        |       |
|                                                                 |            | Root GR    | -0.2   | -0.02  | 1      |       |                |        |       |
|                                                                 |            | RER        | -0.68* | -0.25  | 0.8*   | 1     |                |        |       |
|                                                                 |            | SRL        | -0.9*  | -0.4+  | 0.13   | 0.69* | 1              |        |       |
|                                                                 |            | N uptake   | -0.32  | -0.32  | 0.93*  | 0.86* | 0.31           | 1      |       |
|                                                                 |            | Plant GR   | -0.24  | -0.23  | 0.98*  | 0.83* | 0.21           | 0.97*  | 1     |

\*<0.05 +<0.10



#### BCSD-CMIP3 SoCal Precipitation Change *Medium Emissions Scenario, 2041-2070*

