Effects of plant invasions on invertebrate diversity and feeding guilds: A meta-analysis & review

Denise Knapp, Karen Stahlheber, & Tom Dudley Cal-IPC Symposium, October 2015

Biological invasions: A major source of global change

But also an opportunity...

Cape Ivy at Mount Davidson

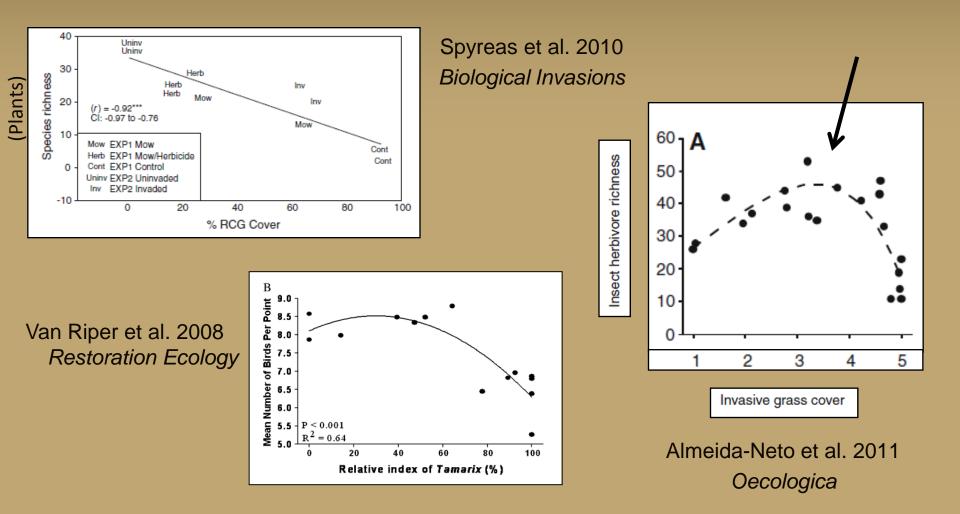
photo by Margo Bors

Invertebrates: Important indicators, ecosystem components

Nutrient cycling

Predation

Pollination


Seed dispersal

Herbivory

Invader cover should be important, but the effects are unclear

When determining impact, restored sites are a good comparison

- They have disturbance in common
- Also, it tells us how we are doing!

Meta-analytic synthesis and review of literature

 What are the effects of plant invasions on invertebrate diversity?

• How important is invader cover?

• How do restoration sites compare as a control?

 How do responses differ between different feeding guilds?

Methods

54 studies reported the parameters needed.

Effect size = Natural log (LN) of X exotic / X native (Response Ratio)

ES also determined for two descriptor variables:

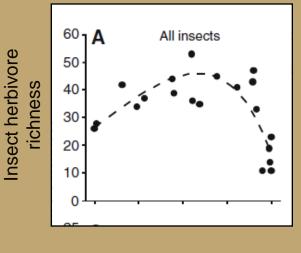
1. Invader cover
<10%, 10-30%, 30-50%, 70-90%, 90-100%
2. Intact or restored control

Results

Species richness 31% lower in areas dominated by non-native plants

Restored areas even richer than intact habitat

Negative effects strongest after 70% cover of invader



Discussion: Invader cover

Threshold of ~70%.

Potential mechanisms:

- Plant diversity
- Vegetation structure
- Abiotic variables
- Coincidental relationship with disturbance?

Invasive grass cover

Discussion: Restoration

Restored plots richer!

Potential mechanisms:

- Early-colonizing invertebrates
- Higher plant richness and cover

High residual heterogeneity: Other variables?

 Plant diversity & cover, habitat structure, plant litter, abiotic variables

These are invader-specific, vary in importance by feeding guild

Feeding Guild Responses: A Review

Herbivores

- Respond directly to host plant diversity
- 90%+ of all insect herbivores are specialists

Hypotheses: Richness reduced; Composition changed; Higher or lower abundance

Surprise!

Only fifty percent of studies found a decrease in herbivore richness (7 vs. 7).

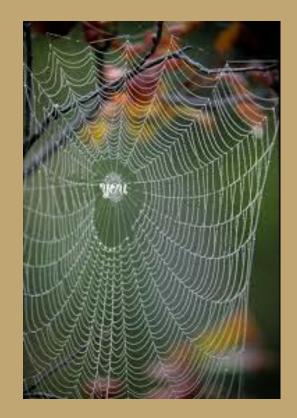
Nuances:

- Level of specialization
 - Scale of comparison
 - Cover of the invader

Predators and Parasitoids

More generalists

More specialists


Both kill other organisms, respond positively to prey and habitat diversity

Results were equivocal for both predators and parasitoids. *Why?*

Perhaps because they respond to aliens indirectly through multiple factors:

- Abundance/diversity of herbivore prey
- Structure of plants, habitats, & landscapes(complexity)
 - Differs by foraging strategy
- Supplementary foods

Pollinators

Pollinators such as bees tend to use whatever is abundant

Williams et al 2011, Basic & Applied Ecology

But: Species richness lower, composition changed

Pollinator Results

Eight of nine studies found aliens reduced pollinator richness

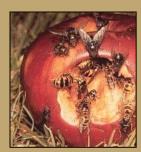
Rare/ specialists most negatively affected

Studies found:

A negative effect on flower visitation of natives
Lowered native seed set

Greater impact with ↑ alien cover, trait overlap
Invader removal typically restores pollinators

Invader detritus and detritivores


Highly invaded habitats = dense plant litter

IF detritivores not as specialized as herbivores (Srivastava et al. 2009), THEN

 \rightarrow More litter = more detritivores?

Detritivore Results

Many studies have found detritivores more <u>abundant</u> in invaded habitats

- Effects on <u>richness</u> less explored
- o Of five studies, results equivocal

(2 richer /1 less rich /1 no difference)

Wolkovitch 2009 (Oecologia): most detritivores declined with high grass invasion –may be more specialized than we thought

Conclusions

 Invasive plants are decreasing invertebrate diversity

Impacts are greatest at cover >70%

Restored areas looking good

Effects differ by feeding guild, level of specialization, hunting mode

o Likely mechanisms:

Changes in plant cover, diversity, habitat structure, litter biomass, abiotic variables

