Impacts of Precipitation Change on Bromus tectorum (Cheatgrass) and Native Vegetation in a Sagebrush Steppe Ecosystem

Catherine Wade, Ph.D. Candidate Environmental Studies Department, UC Santa Cruz

Wildfire Activity in the U.S., 1960-2013

Year

Data source: NIFC 2014

Federal Fire Suppression Costs

Data source: NIFC 2013

Why the increase in area burned?

CLIMATE CHANGE

MANAGEMENT

Westerling et al. 2006

INVASIVE SPECIES

Cheatgrass (Bromus tectorum)

Cheatgrass (Bromus tectorum)

- Native range: Europe, Asia, Northern Africa
- Accidentally introduced to the U.S. in the late 1800s

"Ecological stowaways....found thousands of square miles of readymade seedbed prepared by the trampling hoofs of range livestock. In such cases the spread was often so rapid as to escape recording; one simply woke up one fine spring to find the range dominated by a new weed. A notable instance was the invasion of the intermountain and northwestern foothills by....cheat grass (Bromus tectorum)."

-Aldo Leopold, A Sand County Almanac (1949); pp. 164-165

Cheatgrass Occurrence

Bromus tectorum

Last observation: September 8, 2014 - Map generated: September 30, 2014

Cheatgrass Dominance

- >40 million hectares in the Intermountain West (Whisenant 1990)
- ≥6% of the Great Basin (Balch 2013)
- ~20% of the sagebrush steppe vegetation zone (Knapp 1996)

Cheatgrass-Fire Cycle

Cheatgrass Fire Impacts

Increased fire activity across the arid western U.S., 1980-2009

- Disproportionately large fuel source during the largest fires in the 2000s (as well as a primary ignition point)
 - Extends length of the fire season (Brooks et al. 2004)

"It is impossible fully to protect cheat country from fire."

-Aldo Leopold, A Sand County Almanac (1949); p. 166

Cheatgrass Range Expansion

- >40% of sagebrush steppe is estimated to be at moderate to high risk of displacement by *B. tectorum* in the next 30 years (Chambers et al. 2007)
- Over the last 10-15 years, *B. tectorum* has been expanding into higher elevations (Weltz et al. 2011)

Questions

How will climate change affect the distribution of *B. tectorum* near its high-elevation range margin?

1) How do *snow depth* and *melt timing* influence species composition, phenology, fuel loading, and fuel moisture?

2) Does different *timing of precipitation* events (i.e., spring vs. summer) elicit different responses from native and invasive species?

Hypotheses

- H₁: Species composition will vary according to snow depth.
- H₂: Increased and decreased snowpack will delay and advance phenology, respectively, due to differences in snowmelt timing.
- H₃: Decreased snow depth will result in lower soil moisture and fuel moisture.
- H₄: Spring and summer *rainfall* simulations will *enhance* plant *photosynthetic responses*.
- H₅: Plant responses to the *timing of precipitation* will be speciesspecific.

Ciudad

Treatments

Snowpack manipulations (winter)

summer)

Snowpack Manipulations: Snow Fences

Snow Fence Design WIND **SNOW FENCE** ambient snow depth increased snow depth 15 m decreased snow depth 0 m 5 m 30 m 15 m

Rainfall Simulations: Irrigation

Bromus tectorum (Cheatgrass) Achnatherum hymenoides (Indian ricegrass)

Elymus elymoidesLupinus argenteus(Squirreltail)(Silvery lupine)

Measurements

- Soil moisture
- Leaf area index
- Phenology
- Physiology
- Species composition
- Cheatgrass density

Measurements

- Soil moisture
- Plant height and number of inflorescences
- Physiological measurements
 - Photosynthetic rate
 - Stomatal conductance to water vapor
 - Quantum yield of
 Photosystem II
 - Electron transport rate

Within each year, no effect of snow depth on...

- Soil moisture
- Leaf area index
- Species richness
- Percent cover
- *B. tectorum* density

Reduced *B. tectorum* density following the driest winter

Phenology by Species

Date

Phenology by Snow Zone

Rainfall Timing: Spring

 No effect on plant height or number of inflorescences

Physiological Responses

Bromus tectorum

Elymus elymoides

Lupinus argenteus

Achnatherum hymenoides

Photosynthesis (2013)

Photosynthesis (2014)

Stomatal Conductance (2013)

Date

Stomatal Conductance (2014)

Quantum Yield of Photosystem II (2013)

Date

Electron Transport Rate (2013)

Date

Water Potential (2014)

Rainfall Timing: Summer

Species	Variable	June (2013)	July (2012)	August (2012)
Achnatherum hymenoides	Photo	NS	<i>p</i> < 0.0001	<i>p</i> = 0.0002
	Cond	NS	<i>p</i> < 0.0001	<i>p</i> = 0.0048
Elymus elymoides	Photo	NS	<i>p</i> < 0.0107	NS
	Cond	<i>p</i> = 0.0526	NS	NS
Lupinus argenteus	Photo	NS	<i>p</i> = 0.0549	Too much mortality
	Cond	NS	<i>p</i> = 0.0569	Too much mortality

Conclusions

Relative strength of responses to precipitation change varied seasonally, annually, by species, and by precipitation type

Predicted shifts from snow to rain could facilitate
 B. tectorum expansion at high elevation
 depending on the timing of rainfall events and
 antecedent precipitation

I listened carefully for clues whether the West has accepted cheat as a necessary evil, to be lived with until kingdom come, or whether it regards cheat as a challenge to rectify its past errors in land-use. **I found the hopeless attitude almost universal.**

-Aldo Leopold, A Sand County Almanac (1949); p. 165

Informing Management Decisions: Uncertain precipitation projections with climate change highlight the importance of continued research regarding how *B. tectorum* may respond to climate change

Management Responses: Small window of opportunity to manage invasions necessitates close monitoring of highelevation spread and areas at risk of *B. tectorum* encroachment Valentine Camp (~2,500 m elevation), Valentine Eastern Sierra Reserve, Mammoth Lakes, CA

Acknowledgements

Committee: Dr. Michael E. Loik, Dr. Weixin Cheng, Dr. Brent Haddad, Dr. Constance Millar

Loik lab, past & present

Thank you!

Mildred E. Mathias Graduate Student Research Grant Northern California Botanists Graduate Research Scholarship Benjamin and Ruth Hammett Award Valentine Eastern Sierra Reserve Graduate Student Research Grant UCSC Environmental Studies Department

Other assistance: Amy Concilio, Sharifa Crandall, Melissa Cruz, Dustin Mulvaney, Devyn Orr, Lewis Reed, Kayla Spawton