Assessing Herbicide Risks to Endangered Wildlife

Joel Trumbo Staff Environmental Scientist CA Dept of Fish & Wildlife Lands Program/Wildlife Branch Sacramento CA

Hazards & exposure & toxicity

Are they the same?

Are they related?

How are they related?

Some terminology...

Hazard – the risk the chemical poses

Exposure – the amount of contact and the type of contact a subject has to a toxicant

<u>**Toxicity</u>** – a measurement of the "poisonousness" of the toxicant</u>

 $HAZARD = TOXICITY \times EXPOSURE$

Me on the Summit

Hazard Quotients (HQ)

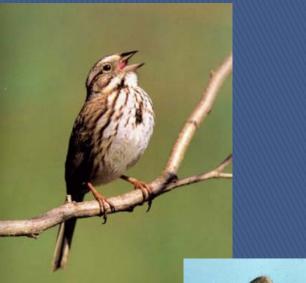
- HQ = exposure/toxicity
- Exposure is determined by...
 - Computer modelingField monitoring
 - Toxicity is determined by laboratory tests
 - Standardized methods are used
 "Representative" test species are used
 Tests involve replication (statistical strength)
 Reproducibility is important

Hazard Quotients (HQ)

- Exposure is typically expressed as
 - mg (pesticide) / L (water)
 mg (pesticide) / kg (food weight)
- Toxicity is typically expressed as...

LD⁵⁰ values for terrestrial organisms (mg/kg)
 LC⁵⁰ values for aquatic organisms (mg/L)
 EC⁵⁰ values for invertebrates (mg/L or mg/kg)
 NOEL (no observable effect levels)
 NOAEL (no observable adverse effect level)

HQ – Exposure Routes


Direct contact

- Water consumption or exposure
 - Spills (up to 200 gals)
 - [Expected peak]

Contaminated vegetation

- Direct application
- Drift or other off-target movement
- Contaminated prey

Aggregate exposures

HQ – Exposure Scenarios

Direct spray to honeybees 100% absorption Small bird (10 g)/contaminated seed Large bird (4 kg)/contaminated grass Large grazing mammal (70 kg) Small carnivorous mammal (5 kg) Large piscivirous bird (5 kg) Sensitive fish species (salmonids) Tolerant fish species (warm-water fish) Sensitive plant species Tolerant plant species

HQ – Toxicity

Derived from laboratory tests

Both acute (i.e. 24 or 96-h) and chronic (i.e. 4 mo)
Endpoints may be lethality or sub-lethal effects

Typical test organisms include...

- Rats for mammals
- Japanese quail & mallard ducks for birds
- Fathead minnow for warm-water fish
- Rainbow trout for cold-water fish
- Honeybees for terrestrial invertebrates
- Ceriodaphnia for aquatic invertebrates

HQ – Toxicity

Surrogate species may be used

Larval fish for frogsBirds for reptiles

Data are derived from...

 The USEPA registration process
 Open literature (USFS)

Hazard Quotients (HQ)

Assume that the 96-h LC⁵⁰ value for rainbow trout exposed to the herbicide active ingredient "triclosulforate" is
 10 mg/L

and... field monitoring has determined that the peak triclosulforate concentration after direct application of the herbicide to water is **11mg/L**

Hazard Quotients (HQ)

 Concentration that is lethal = 10 mg/L

Concentration expected in water = 11 mg/L

HQ = EXPOSURE / TOXICITY
HQ = 11 mg/L / 10 mg/L
HQ = 1.1

Level of Concern (LOC)

HQ>LOC means adverse effects are plausible.

The question is... is the LOC conservative enough to protect the non-target organism?

How representative is this assessment of the real world?

So, what's the LOC? How is it determined?

What's the LOC?

US FOREST SERVICE

Acute = 1 Acute T/E = 1Acute aquatic = 1 Acute aquatic T/E = 1Chronic = 1

US EPA

Acute = 0.5Acute T/E = 0.1Acute aquatic = 0.5Acute aquatic T/E = 0.05Chronic risk = 1

Uses the more conservative NOEL rather then the LD50 or LC50, or an uncertainty factor

Uses the less conservative LD50 or LC50 rather than the NOEL and does not factor in uncertainty.

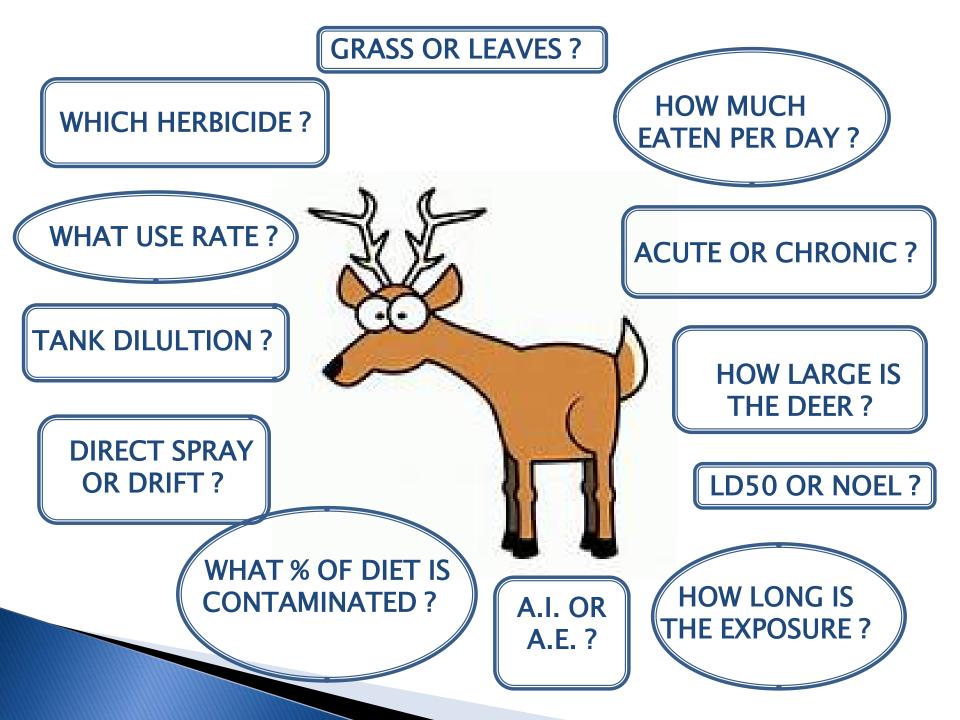
T/E Species & Pesticides

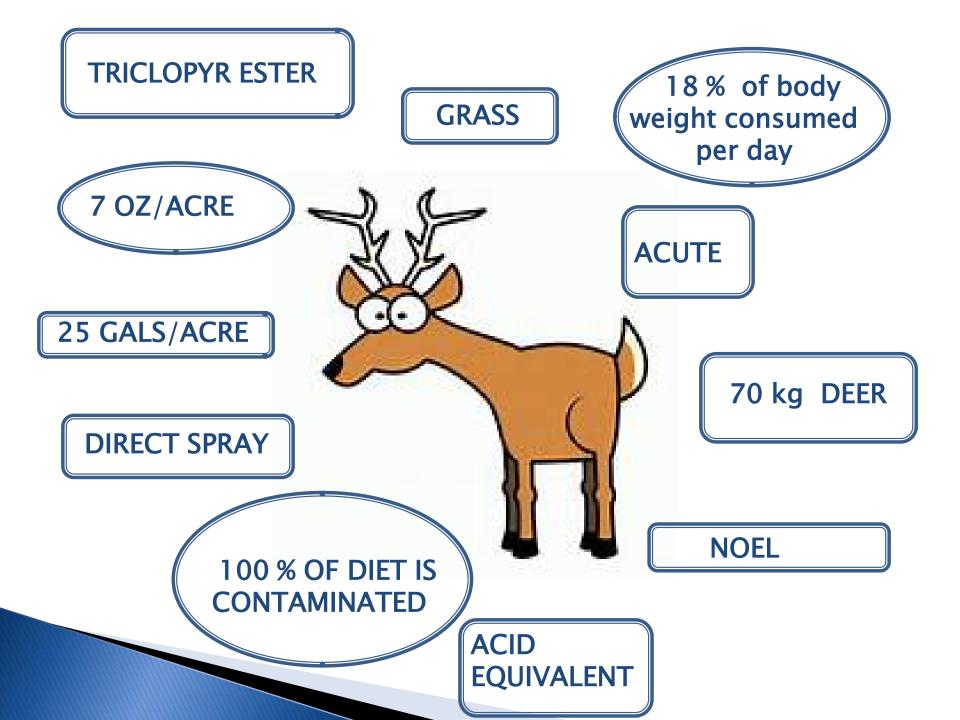
The USEPA uses a more conservative LOCs for threatened/endangered species...

Terrestrial T/E... LOC = 0.1
Aquatic T/E... LOC = 0.05

T/E species are not more sensitive to pesticides than non-protected species

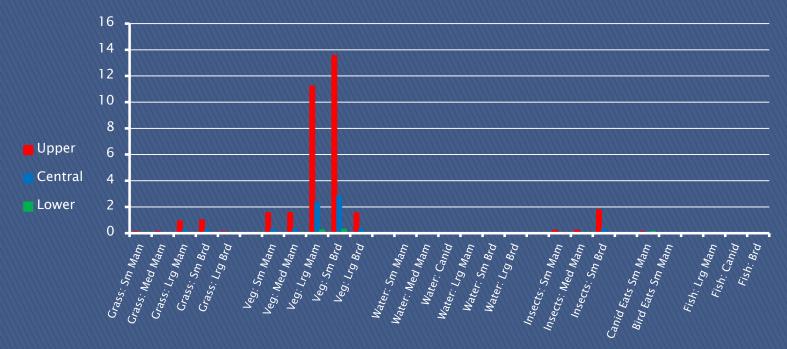
But, the lower LOC provides a higher level of protection due to their low population status


What if the HQ > LOC?



$HQ > LOC \neq Deaths$

HQ < LOC... no cause for concern


HQ > LOC... a suggestion that effects might be plausible

HQs for Triclopyr BEE

Acute Scenarios

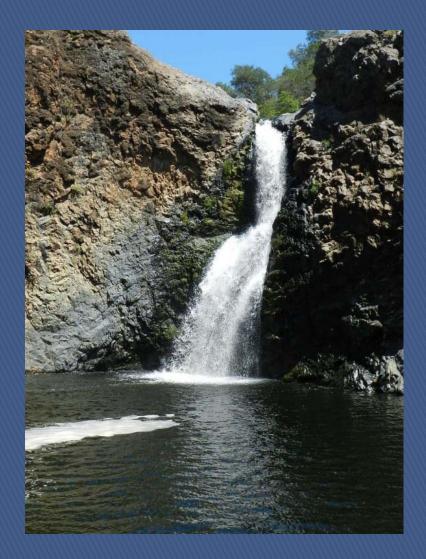
Syracuse Environmental Research Associates, Inc. May 2011

Things to keep in mind...

- These HQs are based on NOEL values
 - Most HQs are < LOC (1)
- The majority of these involve UPPER exposure scenarios (high volume/acre).
- The only CENTRAL exposure scenarios (typical) involve large mammals consuming short grass (deer) and small birds consuming short grass.

If the HQ > LOC...

- Use a different application method
- Time the application to lessen exposure potential
 - Use spray buffers
 - Use a different formulation
 - Switch herbicides



Last point...

The HQ Method is quantitative

Should eliminate "philosophical" decision-making...

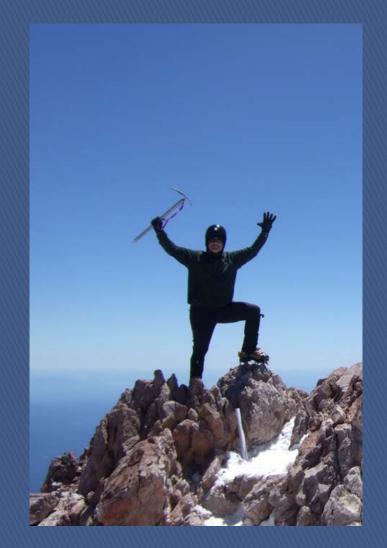
Herbicides as "a last resort" mindset

If you say something long enough...

If you are younger than 40 you may not know who this is...

> Its Colonel Klink from the 1970s t.v. show Hogan's Heroes...

WTF? Looking back on it now... a "funny" show about Nazi's seems very messed up...



Resources

ExToxNet website

USFS Herbicide Hazard Assessments

Coming soon... Cal IPC Wildlands BMP Manual

