Critical Loads forAtmospheric Nitrogen Deposition in California

Mark Fenn

USDA Forest Service, Pacific Southwest Research Station, Riverside, California

Dry Nitrogen Deposition Smog is slow release N-fertilizer

Catmospheric Chemistry 101

 $HNO_{3} + NH_{3} \iff NO_{3}NH_{4}(p)$ Fertilizer, animal wastes, vehicles, vegetation,

Dry deposition

up to >50 kg-N/acre/year, pre-industrial background is 0.5 kg-N/acre/year

NO₂ and NH₃ gases are taken up through stomata

 HNO_3 and NH_3 stick to surfaces, even "dry" surfaces

Particulates and other gases are relatively minor contributors

Dry deposition is >80-90% in polluted regions of California, wet deposition is of lesser importance most places

Bulk Deposition Samplers in the Santa Monica Mountains National Recreataion Area

Elevated nitrate levels in soil solution or surface water runoff is the cardinal sign of ecosystem nitrogen overload

N deposition effects on plant species richness in acid grasslands in Europe

Stevens et al., 2010

Critical Load: Atmospheric deposition level below which harmful effects do not occur on specified sensitive elements of the environment.

Letharia vulpina; wolf lichen; In the Sierra Nevada of California Epiphytic lichen communities begin to change at a CL of \leq 3.2 kg/ha/yr (Fenn et al., 2008, 2010).

Platismatia glauca

Serpentine Grassland: CL based on exotic annual grass invasion

N deposition measurement: Inferential method using passive samplers for major gaseous N pollutants (dry deposition) plus wet deposition of N (precip)

CL based on a roadside gradient at the Edgewood Natural Preserve: Transect at Highway 280, San Francisco Peninsula

Nitrogen CL for Risk of Major Vegetation Type Change: Grassland

- Best defined vegetation change CL; based on roadside gradient in serpentine grassland
- CL = 6 kg N/ha/yr for invasion of exotic annual grasses

Coastal Sage Scrub: CL based on invasion of exotic grasses and changes in mycorrhizal communities across a deposition gradient

Desert Scrub: Joshua Tree NP

CL based on exotic grass invasion with N additions **Grass biomass** leads to fuel buildup, increased fire frequency, and replacement of native species

Desert Scrub CL Exceedence

Pinyon-Juniper Habitat: CL based on N deposition levels that increase biomass production of invasive grasses---and risk of fire

Drivers Affecting Biodiversity

Biodiversity

- Nitrogen deposition is a major driver affecting plant biodiversity
- Nitrogen also affects aquatic biodiversity

- Epiphytic (tree-dwelling) lichen communities are dramatically altered by atmospheric N
- Weedy' invasive plant species are strongly favored by increased nitrogen

Empirical CL Exceedance for 7 Vegetation Types:

- Mixed conifer forest
- Oak woodlands
- Chaparral

- Coastal sage scrub
- Grassland
- Desert scrub
- Pinyon-juniper

Management Strategies

- Reduce N deposition
- Reduce site N capital:

N release in fire, mowing, harvest, cattle grazing

Cars, cows, and checkerspot butterflies: Nitrogen deposition and management of nutrient-poor grasslands for a threatened species; paper by Stuart Weiss

Fire can be used to remove a portion of the excess N accumulated from chronic N deposition

Summary: The N Problem

- **ESince the 1950s, Nr production has greatly increased,**representing perhaps the greatest single experiment in global geoengineering.
- The ecological and environmental impacts of this excess Nr are observed far and wide
 - Quantifying atmospheric deposition inputs across the landscapes is difficult but we are making progress; Multiple approaches are needed
 - Critical loads for N are increasingly being developed and used for ecosystem protection in the U.S.
- Management of systems affected by excess N is labor intensive and costly; Decreasing N emissions is the ultimate solution

