Effects of soil inocula on the growth responses of native annual forbs and the invasive annual grass, Bromus diandrus

Bridget E. Hilbig and Edith B Allen University of California-Riverside Dept. of Botany and Plant Sciences

Plant-Soil Feedback (PSF)

 changes in plant species composition that result in changes in the soil conditions, which in turn cause further change in the plant community, and vice versa

Model of PSF

- A = Plant A
- B = Plant B
- α = soil community associated with Plant A
- β = soil community associated with Plant B
- v = the strength of influence plant B on the soil community

PSF Continued

- Positive PSF
 - commonly results from changes in the density of host-specific mutualists, including arbuscular mycorrhizal (AM) fungi

Negative PSF

- Most plants create PSFs that decrease subsequent conspecific performance
- May result from an accumulation of host-specific bacterial and fungal pathogens

Invasive Species and PSF

- Invasive plants have the ability to alter the rhizosphere microbial community upon establishment and form either positive or negative feedbacks that affect their dominance.
 - Due to differences in:
 - Life history strategies
 - Phenology
 - Physiology

http://www.sci.sdsu.edu/plants

Question

• How does mycorrhizal inoculum from invaded and native coastal sage scrub alter plant growth responses of the invasive species *Bromus diandrus* relative to native species it displaces?

Experimental Design

- Five Species: Native Amsinckia menziesii, Layia platyglossa, Lasthenia californica, Plantago erecta, and exotic Bromus diandrus
- Three Soil Treatments:
 Sterile, Native inoculum,
 Invasive inoculum
- Measurements: Aboveground biomass (vegetative stage) and root biomass

Results: Monocultures

Results: Monocultures

Bromus diandrus Monocultures

Results: In competition with Bromus

Plantago vs. Bromus

Amsinckia vs. Bromus

Amsinckia germination was 5 days after Bromus

Conclusions

- Native and Invasive inocula did not vary in mycorrhizal species composition; there are no uninvaded soils
- Plantago did not respond to source of inoculum, but increased growth with inoculum suggests a positive plant-soil feedback
- Both Amsinckia and Bromus had negative feedback with invasive inoculum.
- The lack of response of *Bromus* to soil inoculum in competition suggests that its invasive potential may be derived from competitive ability rather than soil conditioning
- Different responses to inoculum in monoculture and mixture may be due to differences in soil microbial groups cultured by competitors

Application to Restoration

Even though *Plantago* and *Layia* responded positively to inoculum in monoculture and mixture, inoculation will not ensure restoration success and *Bromus* still needs to be controlled

Acknowledgements

- Allen Lab members
 - Mike Bell
 - Justin Valliere
 - Lora Elicerio
 - Amy Kwiecien
- Other UCR personnel
 - Doug Holt
 - Rob Lennox
- Funding
 - UCR Botany and Plant Sciences Department
 - Riverside County Habitat Conservation Agency