Ecological Remote Sensing of Invasion By Perennial Pepperweed

Margaret E. Andrew & Susan L. Ustin

Center for Spatial Technologies and Remote Sensing Department of Land, Air, & Water Resources University of California Davis

Outline

- 1. Introduction to Lepidium
- 2. Mapping *Lepidium* distribution with hyperspectral remote sensing
- 3. Modeling potential *Lepidium* distribution
- 4. Monitoring Lepidium spread
- 5. Detecting and explaining *Lepidium* phenological variation

Outline

- 1. Introduction to Lepidium
- 2. Mapping *Lepidium* distribution with hyperspectral remote sensing
- 3. Modeling potential *Lepidium* distribution
- 4. Monitoring *Lepidium* spread
- 5. Detecting and explaining *Lepidium* phenological variation

Lepidium latifolium

Dramatically spread across the western US over the past decade.

- Invades wetland & riparian areas; tolerates salinity.
 - Displaces natives; forms monocultures.
- May alter biogeochemical cycles.
- Spreads vegetatively; produces seeds prolifically.

Lepidium latifolium

Cal-IPC A-list exotic pest plants CDFA B-list noxious weed

Understanding the habitat requirements, spread characteristics, and phenology of *Lepidium* can inform management in space and time.

Outline

- 1. Introduction to Lepidium
 - 2. Mapping *Lepidium* distribution with hyperspectral remote sensing
- 3. Modeling potential *Lepidium* distribution
- 4. Monitoring *Lepidium* spread
- 5. Detecting and explaining *Lepidium* phenological variation

Hyperspectral Image Data

 HyMap airborne
 hyperspectral image data:
 Spectral resolution - 128

 15-20nm bands in the visible and reflected IR
 Spatial resolution - 3m

Study Sites

Hyperspectral Lepidium Detection

LIDAR

- Light Detection and Ranging Active sensor
 - Emits pulses of EMR
 - Calculates surface height from time of pulse return

Uses

- <u>High-resolution DEM</u>
- <u>Channel detection</u>
- Vegetation height
- Vegetation structure
- Etc.

Lidar

Benefits of high-resolution LiDAR DEM:
Only spatial elevation products available that adequately capture fine-scaled topography that is ecologically very important in wetlands.

Outline

- 1. Introduction to Lepidium
- 2. Mapping *Lepidium* distribution with hyperspectral remote sensing
- 3. Modeling potential *Lepidium* distribution
- 4. Monitoring Lepidium spread
- 5. Detecting and explaining *Lepidium* phenological variation

12.6 ha current distribution

219 ha potential distribution

25% of Rush Ranch invasible

Only 5% of suitable habitat is currently occupied

> Omission = 13.6%

Current distribution
Potential distribution

Variable Importance **Distance to upland** 44% **Distance to channel** 26% Elevation 9% Aspect 3% Slope 2% Profile convexity 1% Plan convexity 1% Longitudinal convexity 1% **Cross-sectional convexity** 1% Minimum curvature 1% Maximum curvature 1%

Distance to channel includes relevant topographical information, especially relative elevation.

Sample LiDAR returns of a channel cross-section.

 Distance to channel includes relevant topographical information, especially relative elevation.
 <u>Marsh-wide relationship between distance to channel</u> and elevation:

 $R^2 = 0.49$

Distribution Modeling - Conclusions

There is the potential for considerable spread of *Lepidium* at Rush Ranch.

- Lepidium selects habitats that minimize the stress associated with wetlands.
 - Marshland-upland margin increased terrestrial influence.
 - Along channels relatively high ground → avoid inundation and anoxia stress.

Outline

- 1. Introduction to Lepidium
- 2. Mapping *Lepidium* distribution with hyperspectral remote sensing
- 3. Modeling potential *Lepidium* distribution
- 4. Monitoring Lepidium spread
- 5. Detecting and explaining *Lepidium* phenological variation

Lepidium Spread - Bridge Site

Increased 2.6x in 5 years.

Dispersal distances

2004-2005: 15 ± 18m, max = 78m 2005-2006: 5 ± 5m, max = 25m 2006-2007: 6 ± 3m, max = 20m 2007-2008: 5 ± 4m, max = 31m

Lepidium Spread -Western Mesic Site > 30-fold increase in area. **Dispersal distances** 2004-2005: 53 ± 46m max = 215m2005-2006: 16 ± 15m max = 123m2006-2007: 11 ± 11m max = 71m2007-2008: 5 ± 5 max = 57m

Lepidium Spread - Levee Site

Doubled in area.

Dispersal distances

2004-2005: 8 ± 8m, max = 43m 2005-2006: 17 ± 19m, max = 123m 2006-2007: 9 ± 8m, max = 51m 2007-2008: 14 ± 11m, max = 57m

Spatial Variation in Spread

Annual Variation in Spread

Greater spread in wet springs

>Importance of long time series

Conclusions – Monitoring Spread

Lepidium spreads extremely quickly when colonizing a site.

Eradication should focus on satellite populations.

Lepidium spreads steadily at established sites.

Lepidium spread may be influenced by annual precipitation.

Outline

- 1. Introduction to Lepidium
- 2. Mapping *Lepidium* distribution with hyperspectral remote sensing
- 3. Modeling potential *Lepidium* distribution
- 4. Monitoring Lepidium spread
- 5. Detecting and explaining *Lepidium* phenological variation

Identification of phenologic stages Rush Ranch

June 2006

Early flowering

Peak flowering

Fruiting

Identification of phenologic stages Cosumnes River Preserve

June 2005

Vegetative

Flowering

Senescent

Environmental controls of phenology Rush Ranch

distance to channel elevation distance to upland

 $R^2 = 0.33$

Significant terms:

- distance to channel
- slope
- Iongitudinal convexity
- distance to upland
- eastness
- profile convexity
- distance to edge
- d_channel * d_upland
 d_channel * d_edge
- elevation * slope
- slope * minimum curvature
- plan convexity * d_edge
- longitudinal convexity • eastness
- d_upland * eastness
- profile convexity * eastness

Environmental controls of phenology Cosumnes River Preserve

$R^2 = 0.56$

Significant terms:

- elevation
- slope
- maximum curvature
- distance to tree
- elevation *distance to tree
- elevation*maximum curvature
- distance to edge

Environmental controls of phenology

At both sites, more advanced phenology associated with:

- Interior of patches (intraspecific competition)
- Lower convexities
- Shallower slopes
- Higher elevations (drier)

Interannual phenologic variation Cosumnes River Preserve

	2004	2005	2006	2007			
1	Veg - flower	Veg	Veg	Veg			
2	Flower	Veg	Veg	Veg			
3	Flower	Fruit	Veg	Veg			
4	Flower	Fruit- senesce	Veg	Flower			
5	Fruit	Fruit- Senesce	Fruit	Fruit- senesce			
Interpretations confirmed							
by inspecting mean spectra.							

5 phenological trends identified (p < 0.0001, repeated measures MANOVA).</p>

Interannual phenologic variation Cosumnes River Preserve

All trajectories except 3 were strongly related to hydrological variables.

- Total/springtime precipitation (P1, P2)
- Water year/springtime mean discharge of Cosumnes River (D1, D2)
- N days (water year/springtime) with sufficient discharge to inundate floodplain (F1, F2)

R ²	P1	P2	D1	D2	F1	F2
1	.15	.50	.54	.53	.34	.27
2	.32	.64	.57	.59	.59	.57
3	.01	.19	.27	.25	.06	.02
4	.31	.58	.72	.69	.37	.26
5	.70	.80	.68	.71	.89	.92
All	.25	.62	.70	.68	.42	.33

Conclusions - Phenology

Lepidium exhibits substantial spatial and interannual variation in phenology. 33-56% of the spatial variation is explained by environmental variables. Unexplained variation? Missing variables (e.g., soils data)? Genetic? Interannual variation is strongly related to weather/hydrology but also to specific site conditions.

Phenology Relevance

Practical:

- Phenology influences detection. Both field and image surveys most successfully detect flowering *Lepidium*.
- Effectiveness of control varies with phenology.
 These results can inform management scheduling.
 Ecological:
 - Variation in phenology (either plastic or genetic) may contribute to invasion success and habitat breadth.

 Summer-active phenology of *Lepidium* may contribute to invasiveness in Mediterranean climates.

Conclusions

 Remote sensing provides accurate, rapidly repeatable maps of *Lepidium*.
 Uses of remotely sensed *Lepidium* maps:

- Inform management
- Drive predictive distribution modeling
- Monitor spread estimate population parameters and their spatial & temporal variability
- Detect and explain phenological variation
- Etc.

Acknowledgements

Calfed Science Fellows Program California Department of Boating and Waterways (imagery of Delta) Cosumnes River Preserve & Josh Viers (imagery and field data) Solano Land Trust Lillian Chan, Erin Hestir, Maria Santos (field help)