Integrating ecological, social, and economic perspectives on the spread of weeds in CA

> Allan Hollander, Brett Melbourne, Kari Norgaard, Steve Schoenig, Diane Thomson, Sam Veloz

Biological Invasions IGERT, UC Davis (Integrative Graduate Education, Research, & Training)

Outline

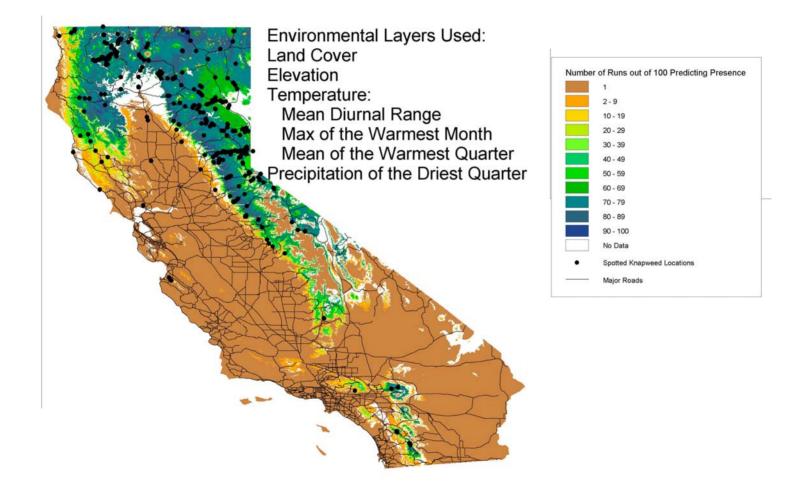
- Rationale
- Overview of project components
- Four components
- Thoughts on collaborating

Rationale

- Need tools to predict risks and costs of spread on relevant space-time scales
- Connect and integrate biological models with social and economic factors
 - human mediation of dispersal, land use patterns, economic costs & benefits
- Spotted knapweed
 early spreader in CA (<5%)

Overview: project components

- Predicting potential range
- Vector analysis
- Forecasting risk dynamic spatial models
- Economic and futures scenarios


Predicting potential range

Sam Veloz Landscape variables WA, OR, ID, MT, WY

Genetic algorithm

Predicting potential range

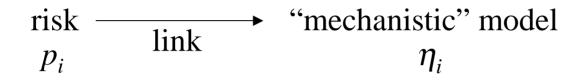
Vector analysis

- Possible spread vectors: "Expert opinion", land managers
- How important are spread vectors such as construction crews, hikers, fire equipment?
- Are there significant vectors that we might not have considered?
- How many sites originate from in versus out-of-state?

Collected more detailed information for about 40 sites

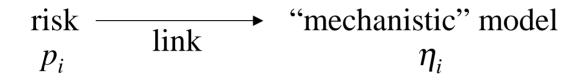
- Email posting on Cal-Weed-Talk Listserv
- Follow up contacts, contacts through Steve and CDFA, through Kari's work in N. California
- Historical records
- Information gathered from Forest Service, BLM, CDFA, State Parks, local community groups

Possible Vectors


Road Unspecified (I.e. blowing hay, private vehicle or via road crews)	15
Road Equipment	3
Straw/Hay/Alfalfa Seed Off Truck	3
Straw/Hay/Alfalfa Seed Planted	3
Straw/Hay/Alfalfa Seed from Livestock Use	1
Logging Equipment or Activities	3
Fire Equipment or Activities	5
Construction Equipment or Activities	8
Log Home Kit	2
Contaminated Christmas Trees	1
Campers	1
Hiker Transplanted (intentional)	1
Unknown	1

Forecasting risk: dynamic spatial models

- What is the probability that a location will become infected in X years
- Data defined models (avail. data)
- Consider alternative spread mechanisms compare using data
- Need a statistical framework


Statistical model

- Estimate risk (*p*) from data
- Data: location + date occupied (observed)
- Presence only data
- Conditional likelihood

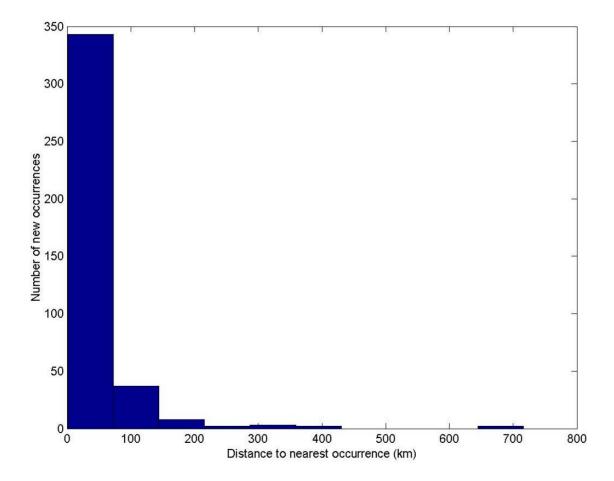
 $\eta_{i} = \beta_{0}$ Random dispersal from out of state $\eta_{i} = \beta_{0} + \beta_{2} N_{i-1}$ Random out-of-state + within-state FOI
Force of invasion (FOI) $N^{\frac{1}{2}}$

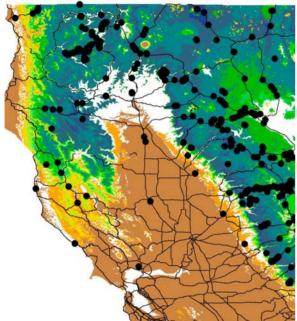
Year

 $\eta_{i} = \beta_{0}$ Random dispersal from out of state $\eta_{i} = \beta_{0} + \beta_{2} N_{i-1}$ Random out-of-state + within-state FOI $\eta_{i} = \beta_{0} + \beta_{2} \sum_{z=1}^{\Omega} w_{z} e^{-\alpha d(x,z)}$ Within-state FOI: distant dependent
Occupancy (i-1) Dispersal kernel $\int_{0}^{0} e^{-\alpha d(x,z)} e^{-\alpha d(x,z)}$

Testing models (hypotheses)

 $\eta_i = \beta_0$


$$\eta_i = \beta_0 + \beta_2 N_{i-1}$$
$$\eta_i = \beta_0 + \beta_2 \sum_{z=1}^{\Omega} w_z e^{-\alpha d(x,z)}$$


poor model

better model p < 0.001

best model p < 0.001

Distance by road

Habitat quality (Q) Different dispersal scales Roads (connectedness)

- distance
- hay transport

$$\eta_{i} = \beta_{0} + \beta_{1}A_{i-1} + \beta_{2}Q_{x}\sum_{z=1}^{\Omega}w_{z}Q_{z}e^{-\alpha_{1}d(x,z)} + \beta_{3}Q_{x}\sum_{z=1}^{\Omega}w_{z}Q_{z}e^{-\alpha_{2}d(x,z)}$$

Out of state Within-state Within-state long distance short distance

Economic and futures scenarios

- Forecasts (5 yr, 10 yr, 50 yr)
- Bioeconomics of controlling spread
 - wildlands & production systems
 - manager behavior in response to policy options
- Futures scenarios
 - transportation forecasts
 - increasing human population
 - climate change

Collaboration

- Distance, different institutions, different priorities, different motivation
- Team meetings very difficult
- Web-based collaboration

cpb-eve.ucdavis.edu/cgi-bin/twiki/view/Weedspread

