Biological Control as a Tool for Ecosystem Management

David Headrick Horticulture & Crop Science Department Cal Poly, San Luis Obispo

Objectives

Define biological control in support of ecosystem management

Delimit biological control for mutual compatibility with ecosystem/environmental conservation

Conservation/B.C. Goals

Biological control can be used <u>only</u> for recovery and restoration = cannot protect
Target-specific for populations
Good for large acreage/low-value land (ecosystems)

Ecosystems passively regenerate

What is being managed/conserved?

Historically

- Individual spp.: whales, pandas, etc.
- Currently: Ecosystems & their constituents
 - biological reserves
 - protected areas
 - undeveloped lands
 - wetlands/watersheds
 - critical habitat

To what state?

Are we going for a return to the "native" condition?

Too much change to understand what is "native"

Native Flora

CA: 17% of flora is introduced
FL: 27% of flora is introduced
UT: 23% of flora is introduced

In Canada: of the 107 noxious weeds recorded, 78 are introduced species

3-66% of flora in National Parks introduced

Plant Species in California (Jepson Manual)

Since 1993...

315 species discovered new to California =
 1 every 12 days

Of these, 18 are considered naturalized or aggressive weeds

Why do natural areas have problems?

Susceptibility to effects of adventive species

- Habitat fragmentation
- Changes in species composition
- Loss of diversity

- **Insects:**
 - Habitat fragmentation <u>Rare</u>
 - Changes in species composition <u>Rare</u>
 - Loss of diversity <u>Rare</u>

- **#** Vertebrates:
 - Habitat fragmentation Common
 - Changes in species composition <u>Common</u>
 - Loss of diversity <u>Common</u>

- Man's influence:
 - Changes in topography
 - Changes in constituent species
 - Sphere of influence
 - acid rain, erosion, atmospheric changes

Weeds:

- Habitat fragmentation Common
- Changes in species composition <u>Common</u>
- Loss of diversity Common

Context for Biological Control:

Insects - limited need

Vertebrates - limited application

Weeds - useful option

Biological Control of Weeds

Theoretical Concepts

"Local animal species diversity is related to the number of predators in the system and their efficiency in preventing single species from monopolizing some important, limiting requisite" - R. T. Paine 1966

Ecological Risks

Replacement by other weed spp.

Cactoblastus – movement away from point source to areas never intended for release

#*Rhinocyllus*:

Ecological Risks

Asynchrony with native thistles led to little or no impact on overall seed production

Interspecific interactions with flowerhead guild members inconsequential

Ecological Benefits

- Restore and protect a diverse habitat
 Ecosystems have regenerative power given the opportunity (reduce invasive species competitive advantage)
- **#** Large-scale control economically feasible
- **#** Continues to be a "fallback" plan

Fiscal Considerations

- Cost/benefit analysis
 - Non-economically driven **
 - Cost of other control methods
 - Able to quantify "control" costs, but not "damage"

Fiscal Considerations

- **#** Funding sources
 - Commodity sources

Historically providing long-term support to bridge program objectives

National or regional sources